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This paper studies bright, dark and singular soliton solutions to quadratic nonlinear media in presence of spatio-temporal 
dispersion as well as inter-modal dispersion. Exact 1-soliton solution is obtained. There are several constraints that will 
naturally fall out during the course of derivation of the soliton solution. These constraint conditions must hold in order for the 
solitons to exist.  
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1. Introduction 
 

Optical solitons is one of the major areas of research 

in the field of optoelectronics and nonlinear optics [1-

25]. There has been an overwhelming number of results 

that are reported so far in this field. Integrability aspects, 

perturbation theory, experimental results and other 

engineering aspects are common grounds of study in this 

context. The most common types of nonlinear media that 

are addressed in this context are non-Kerr law and there 

are various types of such nonlinear forms. It is about 

time to change gear and focus on another form of 

nonlinearity. This is the quadratic nonlinear media. The 

integrability aspect will be the focus of this paper with 

an aim to extract bright, dark and singular 1-soliton 

solution. 

With quadratic nonlinearity, the second harmonic 

generation (SHG) represents the nonlinear effect. The 

pump wave at fundamental harmonic (FH) generates the 

second harmonic (SH). SHG is derivable from 

Maxwell's equation with quadratic nonlinearity. 

Applicability of solitons in quadratic nonlinear media is 

wide ranged. It is applicable in optical routing and 

switching along with quadratic nonlinear crystals. In 

fact, optical solitons with quadratic nonlinearity has also 

been experimentally observed [24].  

 

 

 
 
 
 

2. Governing equation  
 
For quadratic nonlinear media, with inter-modal 

dispersion (IMD) and spatio-temporal dispersion (STD) is 
given by  

 
xxtxxt

qirqkqcqbqaiq
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(2) 
 

Here, q(x, t) and r(x, t) represents the wave profile of the 
FH and SH components respectively. The independent 
variables are x and t that are spatial and temporal variables. 
The coefficients of group velocity dispersion (GVD) terms 
are al with l = 1; 2 for the two components. Then, the 
coefficients of STD are bl. The coefficients of the quadratic 
nonlinear terms are kl while the IMD terms are on the right 
hand sides of the two components and are given by the 
coefficients of

 
 αl. It was pointed out during 2011 that the 

inclusion of the STD makes the governing NLSE well-posed 
as opposed to the consideration of GVD alone, in which 
case, the model problem stays ill-posed [15, 18]. The first 
term for both components is the linear evolution. 

There has been a lot of studies carried out in the past on 
quadratic nonlinear media and consequently lots of results 
are reported during the past couple of decades [1-5, 7-13, 
22-25]. Very recently, exact bright and singular 1-soliton 
solution was obtained for quadratic nonlinear media in 
presence of GVD only and also without IMD [1]. This paper 
is thus and extension and generalization of these earlier 
reports. The ansatz approach will be the integration tool 
adopted in this paper. Bright, dark and singular solitons will 
be obtained in this paper along with several constraint 
conditions that must hold for the solitons to exist.
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3. Soliton solutions  
 

In order to proceed with the ansatz approach, the 

method is first described in its simplest form. First a 

solution guess is made for bright, dark and singular 

soliton. This guess is subsequently substituted into the 

governing equation and the results fall out. The 

constraint conditions and other integrability conditions 

are natural consequences during the process. Therefore 

the starting hypothesis is [1, 19-21] 
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),(),( txietxPtxr                     (4) 

 

where ),( txP
l  (l = 1, 2) represents the amplitude 

component of the soliton and ),( tx  gives the phase 

component with 
 

 

 txtx ),(                      (5) 
 

Here, κ is the soliton frequency, ω is the wave number 

and θ is the phase constant. Substituting (3), (4) and (5) 

into (1) and (2) and decomposing into real and 

imaginary parts gives 
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respectively, from the first component, where v is the 

speed of the soliton. From the second component, one 

recovers 
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Equating the speed of the solitons of the two 

components from (7) and (9) gives 
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Setting the coefficients of independent parameters ω 

and κ leads to 
 

  

 
21

2bb                                        (11) 
 

  
21

                                       (12) 
 

  
21

2aa                                       (13) 
 

Therefore, it makes sense to define 
 

  bbandbb 
21

2  (14) 

  
21

 (15) 

  aaandaa 
21

2  (16) 

 

Consequently, speed of the solitons for both 

components reduce to 
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Also, real part components modify to 
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respectively. Additionally, the governing model equations 

(1) and (2) simplify to 
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These equations will now be analytically solved for 

bright, dark and singular soliton in the following three 

subsections based on the preliminary analysis that is carried 

out so far. 

 

3.1 Bright solitons 

 

For bright solitons, the following hypothesis is selected 

[1, 19-21] 
 

 

τAP lp
ll sech

                               

(22) 
 

for l = 1, 2 where 

 

 

)( vtxBτ                                      (23) 

Here Al are the amplitudes of the solitons in the two 

components and B is the inverse width of these solitons. The 

values of the unknown exponents pl will be determined. 

Substituting (22) into (18) and (19) leads to 
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respectively. Next, balancing principle yields 
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From (24), setting the coefficients of linearly 

independent functions to zero implies 
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Similarly, from (25), setting the coefficients of the 

linearly independent functions give 
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Equating the speed of the solitons from (27) and (29) 

leads to the ratio of the amplitudes being given by 
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with the constraint 
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Next, equating the wave numbers from (28) and (30) 

leads to 
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after implementing (31). Finally, equating the speed of 

the solitons from (17) and (27) yields 
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that poses the constraint condition 
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that must remain valid in order for bright solitons to exist. 

Incidentally, upon equating the speed of the solitons from 

(17) and (29) also leads to same width of the soliton given 

by (35). Finally, bright 1-soliton solutions for the two 

components are 
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3.2 Dark solitons 

 

For dark soliton solution, the starting hypothesis is 

given by [13] 
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for l = 1. 2. Here Al, Bl and B are free parameters. The 

definition of where τ is given by (23). Substituting this 

hypothesis into (18) and (19) reduces them to 
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Balancing principle again yields (26). The coefficients 

of linearly independent functions yield 
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from the first component (40). The coefficients of linearly 

independent functions from second component (41) gives 
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Next equating the speed of dark solitons from (42) and 

(44) leads to the ratio of free parameters Bl for l = 1, 2 as 
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which again prompts the constraint given by (32). Next, 

setting the wave numbers, from (43) and (45), equal to 

one another yields the algebraic relation between the 

free parameters as 
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Now, equating the speed of the soliton from (17) and 

(42) leads to the free parameter B as 
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that introduces the constraint condition 
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Similary equating the speed of the soliton from (17) 

and (44) also yields (48) and hence (49). 

Now, substituting the wave number ω from (43) into 

(48) gives 
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From real part equations (40) and (41) subtracting 

the constant terms leads to 
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This leads to the conclusion, from the coefficients of 

independent parameters, and after implementing (46) 

and (47) 
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Hence, for dark 1-soliton NLSE with quadratic nonlinearity, 

the model equations (20) and (21) further simplify to 
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whose dark 1-soliton solution is: 
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where the free parameters, speed and wave numbers are 

explicitly determined. 

 

3.3 Singular solitons 

 

For singular solitons, the starting hypothesis is [1, 19-

21] 
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for l = 1, 2. For singular solitons, Al and B are still free 

parameters as in dark optical solitons. In this case, 

substituting (60) into (18) and (19) simplifies them to  
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respectively. Balancing principle again yields (26). Then, 
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Equating the speed of the solitons from (63) and 

(65) leads to (31) and (32). Next, equating the wave 

numbers from (64) and (66) gives 
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with the utilization of (31). Finally, equating the speed 

of the solitons from (17) and (63) yields (35) and (36). 

Therefore, singular 1-soliton for quadratic nonlinear 

media with STD is 
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These singular solitons exist as long as the 

appropriate constraints are in place. 

 

 

4. Conclusions 
 

This paper obtained exact 1-soliton solution to the 

NLSE with quadratic nonlinearity in presence of STD as 

well as IMD. Bright, dark and singular soliton solutions 

are obtained along with necessary constraint conditions 

that must hold for solitons to exist. The results of this 

paper are going to be extremely useful to conduct further 

research. One needs to consider time-dependent 

coefficients. Later, additional tools of integrability will 

be applied in order to study this equation further along 

such as Lie symmetry analysis, G’/G-expansion 

approach, exp-function method and several others. Some 

additional aspects of research in this avenue are 

establishing the quasi-particle theory, computation of 

quasi-stationary soliton solution and several others. 

These form the tip of the iceberg. 
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